skip to main content


Search for: All records

Creators/Authors contains: "Singstock, Nicholas R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electrochemical nitrogen reduction reaction (NRR) is a promising route to enable carbon-free ammonia production. However, this reaction is limited by the poor activity and selectivity of current catalysts. The rational design of superior NRR electrocatalysts requires a detailed mechanistic understanding of current material limitations to inform how these might be overcome. The current understanding of how scaling limits NRR on metal catalysts is predicated on a simplified reaction pathway that considers only proton-coupled electron transfer (PCET) steps. Here, we apply grand-canonical density functional theory to investigate a more comprehensive NRR mechanism that includes both electrochemical and chemical steps on 30 metal surfaces in solvent under an applied potential. We applied Φmax, a grandcanonical adaptation of the Gmax thermodynamic descriptor, to evaluate trends in catalyst activity. This approach produces a Φmax “volcano” diagram for NRR activity scaling on metals that qualitatively differs from the scaling relations identified when only PCET steps are considered. NH3* desorption was found to limit the NRR activity for materials at the top of the volcano and truncate the volcano’s peak at increasingly reducing potentials. These revised scaling relations may inform the rational design of superior NRR electrocatalysts. This approach is transferable to study other materials and reaction chemistries where both electrochemical and chemical steps are modeled under an applied potential. 
    more » « less
    Free, publicly-accessible full text available October 6, 2024
  2. The electronic structure and local coordination of binary (Mo 6 T 8 ) and ternary Chevrel Phases (M x Mo 6 T 8 ) are investigated for a range of metal intercalant and chalcogen compositions. We evaluate differences in the Mo L 3 -edge and K-edge X-ray absorption near edge structure across the suite of chalcogenides M x Mo 6 T 8 (M = Cu, Ni, x = 1–2, T = S, Se, Te), quantifying the effect of compositional and structural modification on electronic structure. Furthermore, we highlight the expansion, contraction, and anisotropy of Mo 6 clusters within these Chevrel Phase frameworks through extended X-ray absorption fine structure analysis. Our results show that metal-to-cluster charge transfer upon intercalation is dominated by the chalcogen acceptors, evidenced by significant changes in their respective X-ray absorption spectra in comparison to relatively unaffected Mo cations. These results explain the effects of metal intercalation on the electronic and local structure of Chevrel Phases across various chalcogen compositions, and aid in rationalizing electron distribution within the structure. 
    more » « less
  3. Abstract

    Chemical looping is a promising approach for improving the energy efficiency of many industrial chemical processes. However, a major limitation of modern chemical looping technologies is the lack of suitable active materials to mediate the involved subreactions. Identification of suitable materials has been historically limited by the scarcity of high‐temperature (>600 °C) thermochemical data to evaluate candidate materials. An accuratethermodynamic approach is demonstrated here to rapidly identify active materials which is applicable to a wide variety of chemical looping chemistries. Application of this analysis to chemical looping combustion correctly classifies 17/17 experimentally studied redox materials by their viability and identifies over 1300 promising yet previously unstudied active materials. This approach is further demonstrated by analyzing redox pairs for mediating a novel chemical looping process for producing pure SO2from raw sulfur and air which could provide a more efficient and lower emission route to sulfuric acid. 12 promising redox materials for this process are identified, two of which are supported by previous experimental studies of their individual oxidation and reduction reactions. This approach provides the necessary foundation for connecting process design with high‐throughput material discovery to accelerate the innovation and development of a wide range of chemical looping technologies.

     
    more » « less